Search results for " Boundary condition"
showing 10 items of 212 documents
Rotationally symmetric p -harmonic maps fromD2toS2
2013
We consider rotationally symmetric p-harmonic maps from the unit disk D2⊂R2 to the unit sphere S2⊂R3, subject to Dirichlet boundary conditions and with 1<p<∞. We show that the associated energy functional admits a unique minimizer which is of class C∞ in the interior and C1 up to the boundary. We also show that there exist infinitely many global solutions to the associated Euler–Lagrange equation and we completely characterize them.
A Domain Imbedding Method with Distributed Lagrange Multipliers for Acoustic Scattering Problems
2003
The numerical computation of acoustic scattering by bounded twodimensional obstacles is considered. A domain imbedding method with Lagrange multipliers is introduced for the solution of the Helmholtz equation with a second-order absorbing boundary condition. Distributed Lagrange multipliers are used to enforce the Dirichlet boundary condition on the scatterer. The saddle-point problem arising from the conforming finite element discretization is iteratively solved by the GMRES method with a block triangular preconditioner. Numerical experiments are performed with a disc and a semi-open cavity as scatterers.
Optimization of trigeneration systems by Mathematical Programming: influence of plant scheme and boundary conditions
2014
The large potential for energy saving by cogeneration and trigeneration in the building sector is scarcely exploited due to a number of obstacles in making the investment attractive. The analyst often encounters difficulties in identifying optimal design and operation strategies, since a number of factors, either endogenous (i.e. related with the energy load profiles) and exogenous (i.e. related with external conditions like energy prices and support mechanisms), influence the economic viability. In this paper a decision tool is presented, that simultaneously optimizes the plant lay-out, the sizes of the main components and their operation strategy. For a specific building in the hotel sect…
Assessment of methodologies and data used to calculate desalination costs
2017
Abstract In desalination, similarly with other industries, the cost of the final product is one of the most important criteria that define the commercial success of a specific technology. Therefore, when new projects are planned or new technologies are proposed, the analysis of the expected costs attracts a lot of attention and is compared to (perceived) costs of state-of-the-art desalination or costs of alternative fresh water supply options. This comparison only makes sense if the cost assessment methodologies are based on the same principles and use common assumptions. This paper assesses: (i) the methodologies used to calculate the water cost; (ii) the boundary conditions and (iii) the …
Time-based Chern number in periodically driven systems in the adiabatic limit
2023
To define the topology of driven systems, recent works have proposed synthetic dimensions as a way to uncover the underlying parameter space of topological invariants. Using time as a synthetic dimension, together with a momentum dimension, gives access to a synthetic two-dimensional (2D) Chern number. It is, however, still unclear how the synthetic 2D Chern number is related to the Chern number that is defined from a parametric variable that evolves with time. Here we show that in periodically driven systems in the adiabatic limit, the synthetic 2D Chern number is a multiple of the Chern number defined from the parametric variable. The synthetic 2D Chern number can thus be engineered via h…
Multiple solutions for a discrete boundary value problem involving the p-Laplacian.
2008
Multiple solutions for a discrete boundary value problem involving the p-Laplacian are established. Our approach is based on critical point theory.
Short chaotic strings and their behaviour in the scaling region
2008
Coupled map lattices are a paradigm of higher-dimensional dynamical systems exhibiting spatio-temporal chaos. A special case of non-hyperbolic maps are one-dimensional map lattices of coupled Chebyshev maps with periodic boundary conditions, called chaotic strings. In this short note we show that the fine structure of the self energy of this chaotic string in the scaling region (i.e. for very small coupling) is retained if we reduce the length of the string to three lattice points.
Renormalized solutions for degenerate elliptic–parabolic problems with nonlinear dynamical boundary conditions and L1-data
2008
Abstract We consider a degenerate elliptic–parabolic problem with nonlinear dynamical boundary conditions. Assuming L 1 -data, we prove existence and uniqueness in the framework of renormalized solutions. Particular instances of this problem appear in various phenomena with changes of phase like multiphase Stefan problems and in the weak formulation of the mathematical model of the so-called Hele–Shaw problem. Also, the problem with non-homogeneous Neumann boundary condition is included.
Multicanonical Monte Carlo study and analysis of tails for the order-parameter distribution of the two-dimensional Ising model.
2003
The tails of the critical order-parameter distribution of the two-dimensional Ising model are investigated through extensive multicanonical Monte Carlo simulations. Results for fixed boundary conditions are reported here, and compared with known results for periodic boundary conditions. Clear numerical evidence for ‘‘fat’’ stretched exponential tails exists below the critical temperature, indicating the possible presence of fat tails at the critical temperature. Our work suggests that the true order-parameter distribution at the critical temperature must be considered to be unknown at present.
A Multiscale Approach to Polycrystalline Materials Damage and Failure
2014
A two-scale three-dimensional approach for degradation and failure in polycrystalline materials is presented. The method involves the component level and the grain scale. The damage-induced softening at the macroscale is modelled employing an initial stress boundary element approach. The microscopic degradation is explicitly modelled associating Representative Volume Elements (RVEs) to relevant points of the macro continuum and employing a cohesive-frictional 3D grain-boundary formulation to simulate intergranular degradation and failure in the Voronoi morphology. Macro-strains are downscaled as RVEs' periodic boundary conditions, while overall macro-stresses are obtained upscaling the micr…